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The problem of the flow of a nonisothermal magnetizable liquid with a free surface 
in a nonuniform magnetic field is formulated and investigated theoretically by con- 
sidering a specific example. 

Film flows of a magnetizable liquid in a magnetic field have a number of unique features. 
The magnetic field makes it possible to increase the stability of film flow [i], to ensure 
forced wave formation on the free surface should the need arise [2], and to control the flow 
rate and the film thickness within certain limits [3]. In addition, when the magnetic forces 
are much larger than the gravitational it is possible in practice to ignore the latter com- 
pletely, thus ensuring the operation of a film device in any orientation in space, and also 
under zero gravity. The possibility of producing magnetic fields of various spatial con- 
figurations leads to a variety of stable forms of films of magnetizable liquid and their 
flows. Thus, e.g., in the absence of gravitational forces the free surface of a magnetizable 
liquid in the field of a cylindrical conductor carrying a current has the form of a cylinder 
coaxial with the conductor; this was investigated for stability in [4]. 

Isothermal liquids were studied in the papers mentioned above. We take account of the 
fact that the magnetization and surface tension of the liquid are not constant, and also con- 
sider a class of flows in a direction perpendicular to the action of the magnetic force, i.e., 
in a direction perpendicular to the pressure gradient in the liquid. Thus, in the present 
case the mechanisms leading to the motion of the liquid are thermomagnetic, thermocapillary, 
and the fall of the level of the liquid surface relative to the equilibrium position. We 
note that variations of the magnetization of the liquid and the surface tension can arise not 
only because of the liquid is not isothermal, but also as a result of concentration gradients 
of various admixtures. 

We consider steady film flow of a weightless, incompressible, nonconducting, magnetizable 
liquid along a cylindrical conductor of radius R carrying a current I which produces an axi- 
symmetric magnetic field H~(r). The problem in this case has cylindrical symmetry, and we 
seek its solution in cylindrical coordinates (r, ~, z) with the z axis along the axis of the 
conductor. The free surface of the film flowing along the conductor also has axial symmetry, 
and its coordinates are denoted by ~(z). It is assumed that the curvature of the free sur- 
face in a longitudinal section is small so that it is possible to neglect the flow of the 
liquid in the radial direction and the z dependence of the only nonzero axial component of 
the velocity v. This same condition permits the assumption that the magnetization M and the 
surface tension ~ are given functions solely of the z coordinate along which, e.g., a temper- 
ature gradient may be maintained. The latter is equivalent to the approximation of [5] in 
the problem of plane-parallel flow of an ordinary liquid under the action of thermocapillary 
and thermogravitational forces. Maxwell's equations in such an arrangement have an exact 
solution over all of space ~ = [0, H~ = H = I/2~r, 0], and within the liquid, in addition 
-> 

M = [0, M~ = M(z), 0]. The magnetic field intensity and the magnetization vectors have only 
azimuthal components tangent to the free surface of the liquid at any point. Henceforth the 
dependence of M on H is eliminated by assuming that the liquid is magnetized to saturation. 

The problem posed is described by the equations of ferrohydrodynamics, which in the 
present case have the form 
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Here the pressure jump at the surface of the liquid is determined only by the capillary 
forces p -- Po = a(R7 ~ + R~ I) at r = $. The pressure Po of the gas above the surface is as- 
sumed constant, and the principal radii of curvature R~ and Rz are respectively, R~ = ~ and 
R2 = co. Taking account of this in the above formulation, the solution of Eq. (2) gives the 
pressure distribution in the liquid 

~ +~oMI ( 1 1) P=Po+~ = P o +  ~ -f~-~- r $ ' (3) 

and by using this we rewrite Eq. (i) for the flow velocity of the liquid in the film 

(4) 
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The bounda ry  c o n d i t i o n s  f o r  the  v e l o c i t y  c o n s i s t  i n  t h e  n o - s l i p  c o n d i t i o n  on the  s o l i d  
bounda ry  and the  b a l a n c e  of  t a n g e n t i a l  s t r e s s e s  on t he  f r e e  b o u n d a r y  

dv d~ at r ~. (5) v = 0 a t  r = R ,  ~ - -  = 

dr dz 
In addition, the condition for a constant flow rate of the liquid 

2~ .i' rvdr = Q (6) 
R 

determines the shape of the free surface. 

The solution of problem (4), (5) has the following form: 

v 2 ~  ~ r - - R - - ~ l n  4 dz ~ .rZ-- R z -  2 ~ z l n ~ -  + ~ln . (7) 

Here we have introduced the notation M~ = 2va/~oI. We note that for M a > M a cylindrical 
column of liquid becomes unstable [4], and therefore from now on we assume that M~ < M. 

Using (7) it follows from (6) that 
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The solution of the first-order ordinary differential equation (8) gives the function 
~(z), which determines the shape of the free surface. Functions M(z) and Ma(z) are assumed 
given. By using (8) the derivative d~/dz can be eliminated from Eq. (7) for the velocity 
profile in the film. The analysis and numerical calculations are more conveniently performed 
by introducing the dimensionless coordinates r~ = r/R and ~ = ~/r, where rl varies from 1 to 
~. Then 
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The dimensionless velocity profile VI = 2~nV/~ol(dM/dz)R calculated from this equation 
for dM/dz = const and dMa/dz = const is shown in Fig. i. In this case the thermocapillary 
(dMa/dz) and thermomagnetic (dM/dz) mechanisms contribute equally to the excitation of the 
motion of the liquid (y = i). For y = 0 the only effective mechanism is thermomagnetic, and 
for y = ~ thermocapillary. The velocity profiles VI and V= = 2~V/~oI(dMa/dz)R correspond- 
ing to these cases are shown in Fig. 2 for 6 = 2 and zero flow rate of the liquid (A = 0). 
The velocity profile V3 = 2~R2v/Q corresponds to an isothermal liquid. 

We first analyze the case of an isothermal liquid (dM/dz = 0, dMa/dz = 0) from the point 
of view of the solution of Eq. (8). Then the only mechanism moving the liquid is the drop 
of the surface level relative to the equilibrium level, and the equation of the free surface 
from (8) can be written 
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Fig. i. Profiles of dimensionless velocity V in film (~ = 2, 
y = i); I) A = 0, V = 5Vz; 2) A = 0.2, V = V~; 3) A = 0.5, V = 
Vl; 4) A = i, V = V~. 

Fig. 2. Profiles of dimensionless velocity V in film (~ = 2): 
i) V = V~; 2)~=0, A = 0, V = 10UV:; 3) y = ~, A = O, V = 5V2. 
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where ~o is the value of the dimensionless coordinate of the free surface at the point z = 0. 

For a thin film ~ -- i - 6 << i this equation goes over naturally into the equation 
describing plane-parallel film flow of an ordinary liquid under the action of the force of 
gravity 0g perpendicular to the plane of flow: 

z =  ~~176 1--- , (11) 
12~lQi 

where QI -= Q/2~R is the flow rate of the liquid per unit length of cross section, and in place 
of the gravitational force there appears the magnetic force ~oMG, determined by the constant 
gradient of the magnetic field intensity G, equal in the present case to I/2~R 2. If ~ = ~L 
is the value of the ordinate of the free surface of the film at the point z = L, the flow 
rate of the liquid Q is given in terms of the values of the levels ~o and ~L by the expression 

Q= ~toMIR 3411L [ 13~ (~__~) 1_3_ ( I~L ~ol )], (12) (~. In ~L -- ~0 3 In ~0) -- (~L -- ~0) -- 1 

and for a thin film 

Q ~"~176 [1 [ 6L ~4] (13) 
12rlL ~-~o / J" 

For a nonisothermal liquid we consider the closed (Q = 0) convective flow of a liquid 
resulting from the thermomagnetic and thermocapillary mechanisms for a thin film (6 << i). 

In this case Eq. (8) becomes 

which has the solution 

M ~ M =  d6 z ~ 1 dM 6~ = dM= ( 1 4 )  

3 dz 4 dz dz 

6~ --- [ f ,  M --~ M= dM= + const], .(15) 
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where- ~ _~_ exp M M= " 
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A characteristic feature of the case considered is that even for a thin film constant 
curvature in a cross section affects the profile of the free surface [in (15) the difference 
M -- M~]. Only when M~ << M do these equations go over into the relations describing plane- 
parallel flow [5]: 

~oG(R~) 2 = 3M -3/4 [j' M - ' / ~ d ~  + const]. 

Numerical estimates show that the magnetic force ~oMG may be an order of magnitude 
larger than the gravitational force 0g, and ensure a rather intense film flow of a magnetizable 
liquid. 

NOTATION 

H, magnetic field intensity; M, magnetization; ~o, magnetic permeability of vacuum; I, current 
(r, ~, z), cylindrical coordinates; (~, ~), coordinates of free surface; R, radius of current- 
carrying conductor; p, pressure; v, axial component of velocity; ~, viscosity; RI, Ra, 
principal radii of curvature of surface; ~, surface tension; Q, flow rate of liquid; G, char- 
acteristic value of gradient of magnetic field intensity; 9, density; g, acceleration due 
to gravity. 
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